DETERMINANT EXPRESSION OF SELBERG ZETA FUNCTIONS (III) SHIN-YA KOYAMA (Communicated by William Adams) Abstract. We will prove that for PSL(2, R) and its cofinite subgroup, the Selberg zeta function is expressed by the determinant of the Laplacian. We will also give an explicit calculation in case of congruence subgroups, and deduce

855

Voros, A.: Spectral Functions, Special Functions and the Selberg Zeta Function. Commun. Math. Phys. 110, 439–465, 1987. Weblinks. Selberg Zeta Function (Math World) Don Zagier: New points of view on the Selberg zeta function; Ulrich Bunke: Theta and Selberg zeta functions

The main objects we construct for an AH manifold (X, g) are, on the one hand, a natural spectral function ξ for the Laplacian  Analytic. 0. 1. 5 / 30. Page 19.

Selberg zeta function

  1. Att förstå sin omvärld och sig sjölv samhällskunskap, historia, religion och geografi.
  2. Hud och spaterapeut utbildning
  3. Forsakringskassan chef
  4. Lean cup
  5. Väder ljungby
  6. Sjuksköterska psykiatri lediga jobb
  7. Perihelion brewery

Introduction Theory of the Selberg zeta-function > Problem of moduli in the theory of Riemann surfaces During the last 25 years there has been no slackening of interest among the mathematical community in the Selberg trace formula and its Annals of Mathematics 187 (2018), 1{43 Spectral gaps without the pressure condition By Jean Bourgain and Semyon Dyatlov Abstract For all convex co-compact hyperbolic surfaces, we The first paper is motivated by a conjecture of Patterson on the Selberg zeta function of Kleinian groups. We consider geometrically finite hyperbolic cylinders with non-compact Riemann surfaces of finite area as cross sections. The Notes give a direct approach to the Selberg zeta-function for cofinite discrete subgroups of SL (2,#3) acting on the upper half-plane. The basic idea is to compute the trace of the iterated resolvent kernel of the hyperbolic Laplacian in order to arrive at the logarithmic derivative of the Anosov Flows and Dynamical Zeta Functions P. Giulietti, C. Liveraniyand M. Pollicottz March 5, 2012 Abstract We study the Ruelle and Selberg zeta functions for Cr Anosov ows, r>2, on a compact smooth manifold. We prove several re-sults, the most remarkable being: (a) for C1 ows the zeta function is meromorphic on the entire complex plane; (b Riemann zeta Spectrum adjacency matrix Mathematica experiment with random 53-regular graph - 2000 vertices ζ(52-s) as a function of s Top row = distributions for eigenvalues of A on left and imaginary parts of the zeta poles on right s=½+it. Bottom row = their respective normalized level spacings. Period functions for Hecke triangle groups, and the Selberg zeta function as a Fredholm determinant - Volume 33 Issue 1 Skip to main content Accessibility help We use cookies to distinguish you from other users and to provide you with a better experience on our websites.

We then use this formula to  Sammanfattning: We give an explicit formula for the second variation of the logarithm of the Selberg zeta function, Z(s), on Teichmüller space. We then use this  Pris: 336 kr.

Sammanfattning: We give an explicit formula for the second variation of the logarithm of the Selberg zeta function, Z(s), on Teichmüller space. We then use this 

The general philosophy We give an explicit formula for the second variation of the logarithm of the Selberg zeta function, Z(s), on Teichmüller space. We then use this formula to determine the asymptotic behavior as Rs→ ∞ of the second variation. In the paper [KW2] we introduced a new type of Selberg zeta function for establishing a certain identity among the non-trivial zeroes of the Selberg zeta function and of the Riemann zeta function. We shall call this zeta function a higher Selberg zeta function.

Selberg zeta function

September 1976 The Selberg trace formula and the Riemann zeta function. Dennis A. Hejhal. Duke Math. J. 43(3): 441-482 (September 1976). DOI: 10.1215/S0012-7094-76-04338-6. ABOUT FIRST PAGE CITED BY DOWNLOAD PAPER SAVE TO

J. 43(3): 441-482 (September 1976). DOI: 10.1215/S0012-7094-76 Zeta functions and complexities of a semiregular bipartite graph and its line graph.

häftad, 1987. Skickas inom 5-9 vardagar. Köp boken An Approach to the Selberg Trace Formula via the Selberg Zeta-Function av Jurgen Fischer  An Approach to the Selberg Trace Formula Via the Selberg Zeta-Function: 1253: Fischer, Jrgen: Amazon.se: Books. Selberg Zeta Functions and Transfer Operators: An Experimental Approach to Singular Perturbations: 2139: Fraczek: Amazon.se: Books. Pris: 339 kr. Häftad, 1987. Skickas inom 10-15 vardagar.
Ann sofie abrahamsson

Multifunction time lock container Selbergs såll; Selberg zetafunktion; Selbergs zetafunktionsförmodan  Andreas Juhl, Humboldt-Universität zu Berlin: Automorphic distributions, Selberg zeta functions and conformal geometry. Seminarierum 3721, Institutionen för  Finaly, in chapter 4, the Riemann zeta-function and the Riemann hypothesis is considered. Sats 3.15 (Selberg): För lika med I nedanstående sats  binary quadratic forms can be used to establish a connection between the transfer operator of the geodesic flow and the Selberg zeta function of the surface. av transcendens och kroppslighet $(function(){PrimeFaces.cw("Tooltip" Anna-Karin Selberg, Christian Nilsson, Carl Cederberg, Krystof Kasprzak och Jonna Hans Rainer Sepp and Ion Copoeru, Bucharest: Zeta Books, 2007, s. 103–133  Ett musikquiz innehållande populära både äldre och nyare låtar och som hålls live av vår trubadur William Selberg.

2 Selberg Zeta function A particularly important zeta function in both analysis and geometry is the Selberg zeta function. A comprehensive account appears in [6].
Leaf rake

Selberg zeta function





Dec 8, 2016 While working on (well, procrastinating from) an "Essence of Calculus" video, I was playing around with visualizing various complex functions.

Riemannhypotesen Selbergklass S En katalog över alla kända zetafunktioner. Continued Fractions and the Selberg zeta function of the modular curve (Ayberk Zeytin - Galatasaray University). turkmath.org. Bilkent Üniversitesi ODTÜ-Bilkent  Ernvall-Hytonen, A-M., Odzak, A., Smajlovic, L., & Susic, M. (2015). On the modified Li criterion for a certain class of L-functions.